
A Risk-based Approach to Strategic Decision-Making

for Software Development

James D. Kiper
Department of Computer Science and

Systems Analysis

Miami University

Oxford, OH 45056

kiperjd@muohio.edu

Martin S. Feather
Jet Propulsion Laboratory

California Institute of Technology

4800 Oak Grove Dr

Pasadena CA 91109-8099

Martin.S.Feather@Jpl.Nasa.Gov

Abstract
In any software system development, the most

important strategic decisions are, by definition, those

made early in the lifecycle. However, these early lifecycle

decisions are generally made in a data-starved
environment. The best sources of data are those based on

historical information (if the current project is sufficiently

similar to past systems), and the judgments of domain

experts.

At NASA, we have been developing and applying a
risk-based model to capture information from domain

experts and to study and plan for systems that use

advanced technology.

Here we describe the “Defect Detection and

Prevention” (DDP) model and software tool. This model

and the custom built tool that implements it initially arose
from needs in the hardware domain. However, current

spacecraft systems are a complex combination of

hardware and software. In this paper, we describe some

initial work investigating the applicability of this model

and tool to software components.

1. Introduction

Strategic decision-making for software development of
necessity occurs early in the project lifecycle when data is
scarce. However, these strategic decisions are the most
critical ones in the entire development process since they
constrain the set of possible future, more detailed,
decisions that can be taken. Two common approaches to
finding data on which to base such early decisions is to
use historical data from similar projects, and to based
decisions on the judgments of domain experts. In NASA
applications to spacecraft and related advanced
technology, there are often novel aspects to the missions
that require a combination of both historical data and
expert judgment of engineers. Fortunately, NASA is
blessed with a large number of world-class engineers. In
this paper we focus primarily on utilizing their expert
judgment.

The “Defect Detection and Prevention” (DDP) model
and software tool have been developed and are currently
being used at the Jet Propulsion Laboratory (JPL) to
capture early lifecycle decisions from engineering experts
which is then used to create plans to meet project cost,
schedule, and quality goals. The model that underlies
DDP is a risk-based one. The model’s elements are
described in section 2 and its calculations in section 3.
(These descriptions are adapted from that of [3].) The
DDP process [6] is the subject of section 4. DDP initially
was designed to meet a need for strategic planning of
hardware components of systems. This is still its primary
use at JPL. However, current spacecraft are a complex
combination of hardware and software systems that work
together to accomplish mission goals. In section 5 we
present a proof-of-concept exercise that illustrates how
DDP might be applied to software.

2. DDP Risk Model

The simple quantitative model at the heart of DDP
involves just three key concepts: “Requirements” (what it
is that the system or technology is to achieve), “Risks”
(what could occur to impede the attainment of the
Requirements), and “Mitigations” (what could be done to
reduce the likelihood and/or impact of Risks).
Requirements are related to Risks, and Risks are in turn
related to Mitigations. Specifically, Requirements are
quantitatively related to Risks to indicate how much each
Risk, should it occur, impacts each Requirement. Risks
are quantitatively related to Mitigations, to indicate how
much of a Risk-reducing effect a Mitigation, should it be
applied, has on reducing each Risk.

The subsections that follow give the details of
DDP’s key concepts: Requirements, Risks and
Mitigations, and the Impact and Effect relationships
between them.

2.1 Requirements
Requirements are whatever the system under

scrutiny is to achieve, and the constraints under which it
must operate. They can be “product” requirements on the
system (e.g., functional behavior, run-time resource

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

1

needs, timing requirements), and/or “process”
requirements (on the development process itself, e.g.,
development environment, testing facilities, progress
reporting requirements). Each requirement is assigned a
weight, representing its relative importance to mission
success, etc.

2.2 Risks
Risks are all the things that, should they occur, will

lead to loss of Requirements. Each Risk is assigned an a-

priori likelihood (the chance of the Risk occurring, if
nothing is done to inhibit it). Each Risk is also assigned a
repair cost, what it would cost to remove an instance of
that Risk from the system. The DDP model allows for a
distinction to be made among various time phases; in that
case, the repair cost may be different for each of those
possible time phases.

2.3 Mitigations
Mitigations are all the activities that could be done

to reduce the likelihood of Risks and/or reduce their
impact on Requirements. These include preventative

measures (e.g., training, standards, selection of high
quality parts), detections that discover instances of Risks
through analysis or test (e.g., code walkthroughs) so that
those detected Risks can be corrected prior to release/use,
and alleviations that reduce the severity of Risks (e.g.,
defensive programming that checks its inputs to ensure
they are within specified bounds). We henceforth refer to
these different kinds of mitigations as “prevention”,
“detection” and “alleviation” mitigations.

Each mitigation is assigned a cost, the cost of
performing it. Cost may be a measure of budget, schedule,
physical attributes (e.g., weight and electrical power are
predominant concerns for spacecraft), scarce resources
(e.g., skilled personnel, high fidelity testbeds), or indeed a
mixture of these measurements. Each mitigation is also
assigned the time period within the development effort at
which it would be performed (e.g., requirements phase,
design phase).

It is possible that a mitigation can induce a Risk. For

example, inserting error detection code can change the
run-time behavior of a system, and thus increase the risk
of timing errors.

2.4 Impacts
For each Requirement x Risk pair, the “impact” is

the proportion of the Requirement that would be lost if the
Risk were to occur. It is expressed as a number in the
range 0 – 1, where 0 means no impact whatsoever, and 1
means total loss of the Requirements. Note that a Risk
may impact multiple Requirements and do so to differing
extents. Likewise, multiple Risks may impact a
Requirement, again to differing extents.

Impacts combine additively, e.g., if two different
Risks impact the same Requirement, then their combined
impact on that Requirement is calculated as the sum of
their individual impacts.

One seemingly strange consequence of our
combination rule for impacts is that a Requirement can be
more than completely impacted! For example, impacts of
0.8 and 0.7 on the same requirement add up to a total
impact of 1.5. This is in fact a useful measure, of the
amount of risk to be overcome in order to attain the
requirement. However, when assessing how much of the
Requirements have actually been attained, Requirements
that are more than completely impacted contribute zero
(not a negative amount, note).

The usual notion of risk is a triple – its identity,
likelihood and consequence. Identity and likelihood are
provided in the definition of the risk, while consequence
is derived as the sum total impacts the risk has on
objectives.

2.5 Effects
For each Mitigation x Risk pair, the Effect is the

proportion by which that Risk would be reduced if that
mitigation were applied. It is expressed as a number in the
range 0 – 1, where 0 means no reduction whatsoever, and
1 means total elimination of the Risk.

Effects combine “multiplicatively”: when several

Fig. 1. DDP PACTs act like “filters” in series

Failure Mode

likelihood = L

Failure Mode

likelihood = L * (1 – 0.8) = 0.2L

PACT, effect on Failure Mode = 0.8

PACT, effect on Failure Mode = 0.3

Failure Mode

likelihood = 0.2L * (1 – 0.3) = 0.14L

Failure Mode

likelihood = L

PACT, effect on Failure Mode = 0.86

Failure Mode

likelihood = 0.2L * (1 – 0.86) = 0.14L

Combined effect of PACTs = 1 – (1 – 0.8)*(1 – 0.3) = 1 – 0.2*0.7 = 0.86

Fig. 1. DDP PACTs act like “filters” in series

Failure Mode

likelihood = L

Failure Mode

likelihood = L * (1 – 0.8) = 0.2L

PACT, effect on Failure Mode = 0.8

PACT, effect on Failure Mode = 0.3

Failure Mode

likelihood = 0.2L * (1 – 0.3) = 0.14L

Failure Mode

likelihood = L

PACT, effect on Failure Mode = 0.86

Failure Mode

likelihood = 0.2L * (1 – 0.86) = 0.14L

Combined effect of PACTs = 1 – (1 – 0.8)*(1 – 0.3) = 1 – 0.2*0.7 = 0.86

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

2

mitigations reduce the same Risk, their combined effect is
computed as: (1 – the product, for each Mitigation M, of
(1 – M’s effect)).

Intuitively, mitigations act as “filters” arranged in
series, such that each mitigation filters out its effect’s
proportion of the Risks that enter it. See Figure 1 for an
example in which a mitigation with an effect of 0.8 on
some Risk and another mitigation with an effect of 0.3 on
that same Risk are each applied.

Note that the order in which these mitigations are
applied does not matter.

As was the case for impacts, a mitigation may affect
multiple Risks and do so to different extents, and a Risk
may be “affected” by multiple mitigations, again to
different extents.

Mitigations that induce Risks are taken into account
by having them increase the likelihood of those Risks.
Again, the degree of this influence is expressed as a
number in the range 0 – 1. For a Risk with likelihood L,
and mitigation with inducing effect of E, the new
likelihood is calculated as (1 – (1-L)*(1-E)). Intuitively, if
the Risk was going to occur anyway or it is induced by
the mitigation (or both), then it will occur. Since the
likelihood of (P1 or P2) = (1 – (Likelihood of P1) * (1 –
Likelihood of P2)), we get the formula above. Thus, at the
extremes for the mitigation’s inducing effect E, 0 means
no increase, and 1 means increase to certainty.

For example, if L=0.4 and E=0.7, this calculation is:
(1 – (1-0.4)*(1-0.7)) = (1 – 0.6*0.3) = 0.82.

Note the order in which Risk reducing mitigations
interleave with Risks inducing mitigations does matter.
For example, consider a “perfect” mitigation (one that
reduces a Risk’s likelihood to 0) and a Risk inducing
mitigation. If the perfect mitigation follows the inducing
one, the Risk will be eliminated, while the other way
around, the inducing mitigation will cause the Risk to
occur after the point at which the perfect has had a chance
to apply. In practice, we assign mitigations to distinct
time phases, and organize the calculations so that for
mitigations of a given phase, all the likelihood-reducing
effects are calculated first (the relative order of which
does not matter), and all the likelihood-increasing effects
are calculated second (again, the relative order of which
does not matter). This means that the Risks induced
within a time phase can be reduced only by mitigations of
later time phases.

It has been suggested that, when possible, the
ordering of mitigations could be deliberately chosen to
optimize their net effect. For example, given two
mitigations that could be applied in either order, chose the
ordering that puts first the mitigation that induces Risks.
This would be an interesting extension to the current DDP
implementation.

3. DDP Calculations

In a DDP model, a set of Mitigations achieves
benefits (Requirements are met because the Risks that
impact them are reduced by the selected Mitigations), but
incurs costs (the sum total cost of performing those
Mitigations).

The measure of benefit of a DDP model is
calculated as the sum of the weighted requirements’
attainment. The measure of cost of a DDP model is
calculated as the sum of the costs of the Mitigations
selected for application, plus the sum of the costs of
repairs of the Risks that detection mitigations discover.
Both of these measures take into account the detrimental
impact of Risks on Requirements, moderated by the effect
of Mitigations at reducing Risks’ likelihoods and/or
severities.

The essential aspects are the calculation of Risks’
likelihoods and severities (in the course of which costs of
mitigations and repairs are accumulated), followed by the
calculation of Requirements’ attainment. These are
described next.

3.1 Risk Likelihoods and Severities
The calculation of each Risk’s likelihood starts from

its a-priori likelihood value. At each time phase, the
effects on it of that phase’s prevention and reduction
mitigations reduce its likelihood. As discussed earlier, a
Mitigation acts as a “filter” to remove some proportion of
the Risk. In the course of this calculation, the reduction in
likelihood attributable to detection mitigations incurs a
repair cost. This is the repair cost attributed to the Risk at
that phase, multiplied by the proportion by which the
Mitigation reduces the Risk’s likelihood.

EXAMPLE: consider a Risk (e.g., a requirements
flaw) that costs $100 to repair at requirements formulation
time. Suppose a Mitigation (e.g., requirements inspection)
has an effectiveness of 0.7 against that Risk. If the Risk’s
likelihood prior to application of the mitigation is 0.9,
then after it will be 0.9 * (1 – 0.7) = 0.27. The reduction
in likelihood is 0.9 – 0.27 = 0.63, and so the repair cost is
$100 * 0.63 = $63. An equivalent and more direct
calculation of this is to simply multiply the Risk’s unit
repair cost ($100) by its likelihood prior to mitigation
(0.9) by the mitigation’s effect on that Risk (0.7): $100 *
0.9 * 0.7 = $63.

The mitigations of a time phase that induce Risks
are taken into account after all the mitigations of that
phase that reduce Risks. Their contribution is calculated
using the combination rule discussed in the Effect
subsection earlier.

The severity reductions attributable to alleviation
mitigations are also calculated phase by phase, using the
same kind of calculation as prevention mitigations, but
decreasing Risk severities rather then likelihoods.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

3

3.2 Requirements Attainment
The ideal requirements attainment is simply the sum

of the weights of all the requirements. This ideal would
only be achieved if all the Risks were completely
mitigated, by reducing their likelihoods and/or severities
to zero.

The actual attainment of a requirement, taking into
account Risks and mitigations, is its weight * (1 – the
proportion to which it is at risk, capped at 1). The
proportion to which it is at risk is the sum over all Risks
of each Risk’s (likelihood * severity * impact on that
Requirement). As mentioned earlier, this sum can exceed
1, hence the need to cap it at 1 in this calculation. The
Risks’ likelihoods and severities are calculated as
described in the previous subsection.

EXAMPLE: consider a requirement with weight 100
that is at risk due to two Risks. Suppose that after taking
mitigations into account, the first Risk has likelihood 0.9,
severity 0.5 and impact 0.5, and the second has likelihood
0.4, severity 1.0 and impact 0.3. This requirement’s
attainment is thus (100 * (1 - ((0.9 * 0.5 * 0.5) + (0.4 *
1.0 * 0.3)))) = (100 * (1 - (0.225 + 0.12))) = (100 * (1 -
0.345)) = 65.5.

3.3 Ontology Complexity
The DDP modeling language is fairly simple –

consisting of three first class entities (Requirements,
Risks, and Mitigations) and relationships between
requirements and risks, and between risks and
mitigations. There are surely situations where this fairly
simple ontology is not adequate to model complex
relationships. However, for the early design of complex
technology in which it is currently being used at JPL this
simple ontology is an advantage. First, this allows us to
extract a reasonably robust and accurate model from a
group of very intelligent, but extremely busy engineers in
a few (three or four), relatively short (half day) meetings.
Since this model is used early in the design process, it can
point engineers (in a fairly rudimentary way) to where
problems are likely to occur. Then a more complex and
complete model can be used to analyze these problem
areas more thoroughly.

4. DDP Process

The success of a DDP application is crucially
dependent on the involvement of experts. Their combined
expertise must encompass:

Requirements:

• Driving needs/goals/objectives (e.g., in our
setting, the science mission objectives driving
the need for an instrument’s capabilities).

• Environmental constraints on resources available
to the system (e.g., RAM, power).

• Environmental constraints on the extent to which
the system can impact its environment (e.g.,
electromagnetic fields).

Risks:

• Development problems (inability to construct,
test, repair, operate and maintain the system)

• The multitude of ways the operating system can
fail to meet requirements.

Mitigations:

• Preventative measures that can be employed to
reduce the likelihood of problems arising in the
first place (e.g., coding standards, training, use of
qualified parts)

• Detections that can be employed to uncover the
presence of problems prior to fielding and use of
the system (e.g., inspections, reviews, analyses,
tests).

• Alleviations that can be employed to reduce the
severity of Risks (e.g., array bounds checking
coupled with appropriate responses).

Typical DDP applications have involved 5 – 15 experts
drawn from the disciplines of mission-science, project
planning, software and hardware engineering, quality
assurance, testing, risk management, etc.

DDP’s particular strength is that it can combine inputs
from this wide variety of disciplines. It uses its relatively
simple risk-based quantitative model to do so. Certainly
this model is incapable of capturing all the nuances of a
complex design. However, for early decision making, it is
more important to be able to make key choices, those that,

Determine and
Weight

Requirements

List Potential
Risks

Score Risks
against

Requirements

List & Cost
Relevant

Mitigations

Score
Mitigations

against Risks

1 1 1 Developm

Select
Cost-Effective

Mitigations

Determine
Resources

(Budget, etc)

Descope/
Reprioritize
Requirements

Revise
Budget, etc.

Figure 2: DDP Process [6]

Determine
and Weight

Requirements

List Potential
Risks

Score Risks
against

Requirements

List & Cost
Relevant

Mitigations

Score
Mitigations

against Risks

Development Plan

Select
Cost-Effective

Mitigations

Determine
Resources

(Budget, etc)

Descope/
Reprioritize

Requirements

Revise
Budget, etc.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

4

if done correctly, will lead to significantly superior
designs. By seeking to be all encompassing of the relevant
areas of expertise, DDP is able to avoid pitfalls of too
narrow a focus on just the areas that are understood in
depth. The simplicity of the quantitative risk model means
that all areas can formulate their concerns to at least a
coarse level of fidelity, which is often all that is needed to
make key decisions.

There is a straightforward stepwise process to building
and using a DDP model. The steps are illustrated in figure
2. It has been typical to require at least 4 sessions of 3 to
4 hours each to gather the DDP information for a non-
trivial technology. A facilitator is needed to direct these
sessions. This must be someone who both understands the
DDP process, and has a feel for the broad range of
concerns that the study must deal with. The facilitator
guides the elicitation and decision making steps. The
DDP tool is run throughout the sessions, its screen
projected and visible to all the participants. As
information is gathered, it is entered into the tool in real
time. Someone conversant with the DDP tool controls the
tool, does data entry, switches between the various visual
presentations, etc. In some studies, the same individual
has acted as both facilitator and tool controller; in others,
separate individuals have filled these two roles.

The DDP process has been applied to spacecraft
hardware, software and systems (including both hardware
and software). Engineers from the hardware field are used
to thinking about risks of various technologies. These
fields have much published data about component
reliability. In the software field, less is known (or
published) about typical software risks. To help in this
area, we have preloaded a set of software risks into a DDP
database. This is a taxonomy of software risks from the
Software Engineering Institute. [1] With this initial
seeding, the engineers and domain experts do not have to
begin with a “blank slate.” (They are, of course, not
limited to these software risks. They can down-select
from this set to just those that they deem applicable, and
can add others easily.)

Custom software [2, 4] has been developed to support
the DDP process. This software is used to:

• Capture on-the-fly the stakeholders’ expressions
of knowledge, and help organize this
accumulation of knowledge.

• Perform calculations over the assembled
information.

• Present back the information using a variety of
cogent visualizations.

• Support the stakeholders in performing risk-
informed decision making.

Examples of the DDP software’s features are to be
found in the next section.

5. Proof-of-concept software application

DDP has been used primarily on hardware components

of systems, most often to study their advancement from a
working prototype to engineering model. In this paper we
present a proof-of-concept of how DDP could also be
applied to strategic decision making during software
development activities. It is our assertion that strategies
for software development are analogous those for

hardware system development. That is, we believe that
the DDP model based on requirements, risks, and
mitigations can be effective in strategic decision-making
for software systems also.

Our case study for this assertion is a fault protection
subsystem (in order to conceal proprietary information we
present only some of its information). First, we cast the
system requirements as DDP requirements. A portion of
the resulting tree structure is seen in Figure 3 above.

The risk tree is similar: a portion is seen in Figure 4.

Requirements, risks and mitigations are linked through

two matrices. The first of these matrices correlates risks
and requirements. (See Figure 5.) Engineers and domain
experts are asked to estimate the impact that each risk,
should it occur, would have on each requirement.
Impacts are expressed as numbers in the range 0 to 1. An
estimate of 1 means that this risk is so serious that, if it
occurs, that requirement would be completely lost. A
value of 0 implies that this risk will not effect this

Figure 3. A portion of the requirements tree

Figure 4. A portion of the risks tree

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

5

requirement at all. A value of ρ (0 < ρ < 1) means that

the experts expect that risk to cause the proportion ρ of
that requirement to be lost. It is also possible to provide a
non-numeric value, which will be ignored in the
calculations performed by the DDP tool, but which has
utility as a placeholder (e.g., a “TBD” value which
someone will be responsible for looking up). For the
purpose of our proof-of-concept demonstration, we
populated this matrix with our own estimates. If this were
a real study, we would follow the usual process and
convene a group of experts who together would provide
and vet such information.

In this study we have so far worked with only a subset
of the wide range of activities applicable to the reduction

of software risk. Figure 6 shows (most of) our tree
structure of such activities:

The second matrix (not shown here) correlates risk and
mitigations. That is, for each mitigation-risk pair, domain
experts are asked to estimate the ability of that mitigation
to alleviate, detect or prevent that risk. Again, these are
numbers in the range 0 to 1, with 1 meaning that this
mitigation completely eliminates this risk; 0 means that it
has no effect on this risk. (For mitigations that detect
risks, the intent is that these be applied before the
spacecraft is launched, in time for any detected problems
to be repaired).

5.1 Decision Making
Up to this point in the DDP process, the task of the

DDP tool is to record these decisions. After this data is
collected, the focus of the process switches to one of
decision-making, guided by the recorded information. The
primary purpose of DDP has been to help guide the
selection of which of the mitigating actions to take to
overcome the risk and therefore to achieve the
requirements. Since there are typically many more
possible mitigations than can be simultaneously afforded,
the aim of this step is to emerge with a cost-effective
selection from among them. Another outcome can be the
strategic decision to modify and/or abandon some
requirements if it becomes clear that it is not possible to

satisfactorily achieve them all with the resources
available. This is called descoping [5].

In addition to the matrix and list views used primarily
for input of data, DDP provides several views appropriate
for study of various measures calculated from this data.
One of these is a familiar bar chart view. For example,
when showing the aggregate impact that each risk has on
the requirements (taking in to account both the weight of
the requirements and the strengths of the impacts), this is
useful to indicate the “tall pole” risks worthy of further
attention. See Figure 7.

The heights of the bars indicate the sum total impacts

(on requirements) of each of the risks. These can be
sorted in various ways; the most commonly used one
being in descending order of magnitude. The small strip
along the bottom shows a thumbnail view of the entire bar

Figure 6. Partial tree of software risk

mitigations

Figure 7. Bar chart of (unmitigated) risks

Figure 5. A portion of the Requirements (rows) x

Risks (columns) matrix

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

6

chart. The black rectangle overlaying that thumbnail
shows which portion of the entire bar chart is currently
visible at full scale.

The tallest bars are those risks that have the greatest
sum total impacts on weighted requirements – these are
the risks that one would want to focus attention on.

As mitigations are selected, their effects reduce risks
(by decreasing the likelihoods and/or impacts of those
risks, depending on the kind of mitigation). The same bar
chart is used to reveal this – see Figure 8. Green shows
the risk levels before mitigation, red shows the risk levels
after mitigation.

The advantage of views such as these is that they allow
the users to immediately and dramatically see the risk-
reducing effects of mitigations. One of the banes of

software quality assurance is convincing developers of the
value of the activities it recommends. The aim of this
work is to reveal the benefits of assurance activities in
terms of the risks they reduce. Developers can still
exercise choice over which mitigation activities they wish
to perform, but now their choices are informed by the risk
implications that stem from omitting some activity. DDP
offers further assistance in this regard by using this same
bar chart display to show comparisons among alternate
selections. This is shown in Figure 9, where an alternate
selection of mitigations has been made. Black shows
where risks have increased relative to the first selection;
yellow shows where risks have decreased.

Another display of risk status offered by DDP is the
familiar 2-D risk chart, the axes of which are likelihood
and impact. This is seen in Figure 10. The red-yellow-
green colored regions demark high, medium and low risk

areas (because the axes of the chart are log scale, the
diagonal boundaries between these regions are themselves
contours of constant risk). It is a common policy to
determine the managerial treatment of risks depending on
which of these regions they fall within (the boundaries
between regions being another strategic decision). For
example, high likelihood high impact risks are brought to
the attention of the project as a whole, are more closely
tracked over time, etc. Other risk tools commonly use a
rectangular matrix of risk regions for a similar purpose.
DDP can generate these other chart forms too.

A selection of mitigations has a benefit (the net effect
is to reduce risks, and thereby improve the expected
attainment of requirements), but also has a cost (the sum
of the costs of performing the mitigations themselves, and
for those problem-detection type mitigations, such as tests
and analyses, the costs of correcting the defects they
discover). DDP automatically computes both the benefit
and cost of the currently selected mitigations. So far the
illustrations have concentrated on showing the benefit
side of the equation. DDP also displays a small but
important cost meter: as mitigations are selected, the $
figure on the cost meter increases. In selecting
mitigations, users must take into account both the benefits
and the costs. Emerging with a cost-effective set of
mitigations is one of the primary uses of DDP.

To assist in this DDP has a built-in mechanism for
heuristic optimization. The current distribution of DDP
uses simulated annealing for this purpose, but we have
also experimented successfully using genetic algorithms
[8]. Optimization can be set to search for the selection of
mitigations that will achieve maximum requirements
attainment while staying at or below some cost ceiling, to
search for the selection of mitigations that minimizes the
cost of attaining (or improving on) some prescribed lower
bound of requirements attainment, or to search for some
hybrid combination of the two. The result of a search is
the identification of (near) optimal mitigation selections.
These selections can be scrutinized through DDP’s
various displays just as can a manually chosen selection

Figure 9. Comparison of alternate mitigation

selections

Figure 10. 2-D risk chart

Figure 8. Bar chart of mitigated risks

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

7

of mitigations, so users can employ the heuristic search to
reveal promising solutions, and thereafter fine-tune those
solutions as needed (e.g., they might have reason to prefer
one slightly inferior solution over another slightly
superior solution, because it avoids the use of a scarce
testing resource, say). The heuristic search can also be
repeated at intervals across the cost spectrum to reveal the
overall shape of the cost/benefit space. Our software
dataset is still only partially completed with respect to its
list of mitigations, so it is premature to utilize this
capability just yet. As our study progresses, we look
forward to experimenting with this.

6. Discussion

There are some strengths and weaknesses to the DDP
model and how it is applied. We discuss these in
relationship to related work on software assessment.

6.1 Strengths

The relative simplicity of the DDP model gives it the
ability to span a wide range of concerns (e.g., technical
and programmatic risks). In this respect it is reminiscent
of, for example, the openness of the i* model [9, 10], used
for evaluation of (among other things) software design
alternatives.

The information that goes into a DDP model can be a
mixture of experts’ estimates and (where available)
historical knowledge.

The data that comprises the model is extensible.
Information can be added, changed and removed on-the-
fly. For example, risks specific to the case at hand can be
introduced, irrelevant ones removed, and pre-populated
data adjusted (e.g., if the analysis team includes an expert
on the use of formal methods, the cost for such analysis
might be reduced, and its effectiveness increased).

The data to populate a DDP model, while voluminous,
is straightforward, and experience has shown the
feasibility of capturing sufficient information (sufficient
to emerge with insightful findings) with modest amounts
of experts’ time. For our technology infusion studies, it is
typical to require the involvement of, say, 10 experts in 4
half-day sessions. The total amount of effort is thus on the
order of 160 hours. When key decisions are being made
as to whether to commit to a multi-million-dollar next
step in the advancement of a technology, such an
investment of time is not unreasonable.

Overall DDP is reminiscent of QFD (Quality Function
Deployment) method [11], widely used across a range of
industries and application areas. DDP has a more
quantitative, risk-centric perspective, with a probabilistic
interpretation pervading its Requirements-Risks-
Mitigations model.

6.2 Weaknesses
The DDP model schema (notably the formulae by

which impacts of multiple Risks on the same Requirement
“add up”, and by which multiple Mitigations against the

same Risk combine) is inflexible. These formulae are pre-
set, and do not necessarily apply well to all situations.
While there are some workarounds that can be employed
if need be (e.g., representing a combination of mitigations
as a distinct mitigation whose effectiveness at reducing
risks can be asserted), they are clumsy to use. Other
researchers adopt models that can be constructed to match
the case at hand, and thus more faithfully represent the
software development process, e.g., the Bayesian Belief
Net models of [12], or the simulation models of [13].

DDP lacks a means for validation of its models. The
aforementioned formulae were chosen to be plausible, but
are not based on a solid body of evidence. Likewise the
experts’ estimates that comprise a significant portion of
most DDP models are constructed on-the-fly, and so do
not have an explicit pedigree to experiential data. This is
in contrast to software estimation techniques such as
COCOMO and, more recently, COQUALMO and iDave
[14, 15] which are derived from data from past software
projects, possibly tempered by a consensus process of
experts (e.g., using Delphi techniques). Also similar is the
stochastic model of [16]

There is still an “art” to populating a DDP model. The
use of pre-populated models as a starting point (e.g., a
risk taxonomy of generic software development
problems) is somewhat helpful, both to establish an
overall structure, and to serve as a reminder (much like a
checklist). However, there is need for discretion over how
much additional information to add (what is the scope of
the study?), and over how much detail to descend to (e.g.,
does the single Mitigation “software inspections” suffice,
or is there need to distinguish among alternative forms of
inspections, e.g., Fagan inspections, Perspective Based
Reading, etc.). The danger of staying at too narrow a
scope and/or too high a level is lack of coverage and
discrimination among significantly distinct cases, while
the danger of overly broadening the scope and/or
descending to too low a level is the increased effort it
takes to populate the model. We address this problem by
using a DDP-knowledgeable person to facilitate the
meeting (in fact, we usually use two such people – one to
serve as facilitator, the other to “drive” the DDP
software).

DDP’s model probabilistic model is overly simplistic
when compared to the structures seen in use in full-
fledged Probabilistic Risk Assessment [17]. For example,
PRA tools such as Sapphire, QRAS and Galileo have
explicit notions of temporal dependencies (through event
sequence diagrams or phase-dependent fault tree gates),
and of probability distributions with which to capture and
reason about uncertainties. Although we have recently
incorporated logical fault trees into DDP’s Risks
structures [18], these are but a small step toward the full
representational power of PRA. We have explored the use
of DDP as an agile precursor step that serves to indicate
where a more elaborate PRA model needs to be

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

8

constructed [19]. In the software arena, however, it is less
routine to apply PRA methods; instead, modest
applications of fault trees, Software FMECAs and hazard
analyses (and combinations of them, e.g., [20]) are the
norm. For such applications DDP seems to be relatively
well suited.

In the software arena, DDP is reminiscent of the
KAOS models of [21], specifically their treatment of
“obstacles” (akin to DDP’s “Risks”). However, whereas
the KAOS models emphasize a logic-structure based
treatment (including temporal logic to capture, e.g.,
timing requirements), DDP has emphasized instead a
quantitative treatment more immediately suited to capture
and tradeoff reasoning over and between so-called “non-
functional requirements”. It is intriguing that in recent
work the KAOS approach is being extended to
incorporate quantitative reasoning [22], while, as
mentioned above, logical fault tree constructs are being
incorporated into DDP. It seems these alternate
approaches are each expanding in the direction of the
other.

7. Conclusions

The paper has described the DDP process, and shown
aspects of our ongoing study of software specific
application of our risk-informed decision making process
and its software support, DDP.

The DDP process and tool has proven itself useful in
strategic planning for hardware-based technology at JPL
over the past few years. In many of the applications, the
DDP process has yielded insights that the experts
involved describe as both surprising and correct –
surprising in the sense that they would not have emerged
with those insights until significantly later in the
development process, by which time reacting to them
would be more costly; and correct in the sense that when
they trace through the DDP data underpinning the insights
they agree upon its validity. Examples of kinds of insights
include recognition of a risk that is more serious than
would have been suspected (and so warrants increased
efforts to mitigate it, or, in some cases, revision of the
requirements), and recognition that a hitherto unfavored
mitigation is really needed (or in some cases the reverse –
that a regularly favored mitigation is in this instance
unnecessary).

We ascribe its benefit to the following factors:

• It is typical for DDP studies to involve a non-
trivial amount of data. There are commonly
dozens (or even hundreds) each of requirements,
risks and mitigations, and there may well be
thousands of non-zero impact and effect values
connecting these.

• The volume and interconnectedness of this data
reflects the complexity of the challenges inherent
in the design of complex systems. DDP aims to
help in this design process, and so must manage

this quantity of information in such a way as to
allow the engineers and domain experts both to
provide the information, and make decisions on
the basis of that aggregated information.

In our study so far of application of DDP to a software
system, we find these same phenomena recurring. This
gives us confidence that DDP will prove to be useful for
strategic decision making in software development.

8. References

[1] Carr, M. J., S. L. Konda, et al. (1993). Taxonomy-Based
Risk Identification. Pittsburg, PA, Software Engineering
Institute: 78.

[2] Cornford, S. L., Feather, M.S. et al. (2001). DDP – A tool
for life-cycle risk management. IEEE Aerospace Conference,
Big Sky, Montana, 2001.

[3] Feather, M.S. & Cornford, S.L., “Quantitative Risk-Based
Requirements Reasoning”, Requirements Engineering (2003) 8:
248-263, Springer-Verlag, London.

[4] Feather, M.S., Cornford, S.L. Dunphy, J. & Hicks, K.A.
(2002). A Quantitative Risk Model for Early Lifecycle Decision
Making; Proceedings of the Conference on Integrated Design

and Process Technology, Pasadena, California, June 2002.
Society for Design and Process Science.

[5] Feather, M.S., S.L. Cornford & K.A. Hicks (2002)
Descoping; Proceedings of the 27th IEEE/NASA Software

Engineering Workshop, Greenbelt, Maryland, Dec 2002. IEEE
Computer Society.

[6] Kiper, J.D. and Feather, M.S. “From Requirements through
Risks to Software Architecture for Plan-based and Agile
Processes”, Proceedings of the Workshop on Requirements

Engineering for Adaptive Architectures; Monterey Bay, CA,
Sept. 2003.

[7] Lutz, R. and Mikulski, C. "Empirical Analysis of Safety-
Critical Anomalies During Operations", IEEE Transactions on

Software Engineering, 30(3), March, 2004

[8] Cornford, S.L., M.S. Feather, J. Dunphy, J. Salcedo & T.
Menzies, 2002, “Optimizing the Design of end-to-end
Spacecraft Systems using Risk as a Currency”, IEEE Aerospace

Conference, Big Sky, Montana, Mar 2003, pp. 7.3361 – 7.3368.

[9] Chung, L., B.A. Nixon, B.A., E. Yu, E., and Mylopoulos,
J., Non-Functional Requirements in Software Engineering,
Kluwer Academic Publishers, Boston, 1999.

[10] Mylopoulos, J., Chung, L., Liao, S., Wang, H., and Yu, E.,
2001, “Exploring Alternatives during Requirements Analysis”,
IEEE Software 18(1): 92-96.

[11] Akao, Y. 1990 “Quality Function Deployment”,
Productivity Press, Cambridge, Massachusetts.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

9

[12] Fenton, N., Marsh, W., Neil, M., Cates, P., Forey, S., and
Tailor, M.; Making resource decisions for software projects.
Proceedings of the 26th International Conference on Software

Engineering, 2004, May 23-28, 2004, pp. 397 – 406.

[13] Wakeland, W., Martin, R.H. & Raffo, D. “Using Design of
Experiments, Sensitivity Analysis, and Hybrid Simulation to
Evaluate Changes to a Software Development Process: A Case
Study”, Proceedings of International Workshop on Software

Process Simulation and Modeling (ProSim’03), Portland, OR,
May 2003

[14] Boehm, B., et al., Software Cost Estimation with
COCOMO II, Prentice Hall, Upper Saddle River, NJ, 2000.

[15] Boehm, B., Huang, L., Jain, A. & Madachy, R., “The ROI
of Software Dependability: The iDave Model”, IEEE Software,
12(3): 54-61, May/June2004.

[16] Stutzke, M.A. and Smidts, C.S., “A Stochastic Model of
Fault Introduction & Removal During Software Development”,
IEEE Transactions on Reliability, 50(2): 184-193, June 2001.

[17] Stamatelatos, M., et al. “Probabilistic Risk Assessment
Procedures Guide for NASA Managers and Practitioners”
http://www.hq.nasa.gov/office/codeq/doctree/praguide.pdf
Office of Safety and Mission Assurance, NASA Headquarters,
Washington, DC 20546, August 2002.

[18] Feather, M.S., Towards a Unified Approach to the
Representation of, and Reasoning with, Probabilistic Risk
Information about Software and its System Interface", to appear
in the Proceedings of the 15th IEEE International Symposium

on Software Reliability Engineering, Saint Malo, Bretagne,
France, 2-5 November 2004. Available from:
http://eis.jpl.nasa.gov/~mfeather/Publications.html

[19] Cornford, S.L., Paulos, T., Meshkat, L. & Feather, M.,
“Towards More Accurate Life Cycle Risk Management Through
Integration of DDP and PRA”, IEEE Aerospace Conference, Big
Sky, MT, March 2003, pp. 2.1106-2.1200.

[20] Lutz, R. and Woodhouse, R. “Requirements Analysis using
Forward and Backward Search”, Annals of Software

Engineering, Special Volume on Requirements Engineering, 3,
pp. 459-475, 1997.

[21] A. van Lamsweerde & E. Letier, “Integrating Obstacles in
Goal-Driven Requirements Engineering”, ICSE98 – 20th

International Conference on Software Engineering, IEEE-ACM,
Kyoto, April 1998.

[22] Letier, E. & van Lamsweerde, A., “Reasoning about Partial
Goal Satisfaction for Requirements and Design Engineering”, to
appear in the Proceedings of ACM/SIGSOFT 2004/FSE-12,
Newport Beach, CA, 2004.

0-7695-2268-8/05/$20.00 (C) 2005 IEEE

Proceedings of the 38th Hawaii International Conference on System Sciences - 2005

10

